*************** 4+ 4+ 4+ + +
+++++++++++++++ + 4+ 4 4+ +

eCognition Developer

Tutorial 7 — Convolutional Neural Networks in eCognition

www.trimble.com

n n N H
@ Trimble.

Page 1

Introduction

About this Tutorial
Requirements

Data included with the Tutorial

Lesson 1 - First steps with convolutional neural networks

1.0 Lesson Content

1.1 Create a project and prepare a classified image object level

1.2 Create labeled sample patches

1.3 Create a convolutional neural network
1.4 Train your network

1.5 Use your network

1.6 Save your network

Lesson 2 - From class heatmap to accuracy assessment

2.0 Lesson content

2.1 Heatmap smoothing

2.2 Find local maxima

2.3 Select optimal threshold
2.4 Create target vector layer
2.5 Evaluate error rates

2.6 Comparison to template matching

Where to get additional help & information?

The eCognition Community
The User Guide & Reference Book

eCognition Training

TRANSFORMING THE WAY THE WORLD WORKS

Page 2

& Trimble.

5 D W ow

O N o nun s

10
11

13
13
13
14
14
15
15
16

18
18
18
18

Introduction

About this Tutorial

Artificial neural networks have long been popular in machine learning. More recently, they have received
renewed interest, since networks with many layers (often referred to as deep networks) have been shown to
solve many practical tasks with accuracy levels not yet reached with other machine learning approaches. In
image analysis, convolutional neural networks have been particularly successful. The term refers to a class of
neural networks with a specific network architecture, where each so-called hidden layer typically has two distinct
stages: the first stage is the result of a local convolution of the previous layer (the kernel has trainable weights),
the second stage is a max-pooling stage, where the number of units is significantly reduced by keeping only the
maximum response of several units of the first stage. After several hidden layers, the final layer is typically a fully
connected layer. It has a unit for each class that the network predicts, and each of those units receives input from
all units of the previous layer.

image patch hidden layer 1 hidden layer 2 final layer
1 layer 4 feature maps 8 feature maps 4 class units
36x36 28x28 14x14 10x10 5x5

1 f ! f \

convolution max convolution max convolution
(kernel: 9x9x1) pooling (kernel: 5x5x4) pooling (kernel: 5x5x8)

Figure 0.1: Schematic representation of a convolutional neural network with two hidden layers. Kernel weights
are optimized during training with labeled samples, i.e., image patches whose class is known.

This tutorial gives you an introduction to using convolutional neural networks in eCognition, which is based on the
Google TensorFlow™ API. In particular, you will learn how to create, train, and apply convolutional neural
networks. This tutorial assumes basic knowledge of the eCognition Developer software.

This module has two lessons:

® Lesson 1 shows you how to use the new algorithms for convolutional neural networks
® Lesson 2 shows you how to use the model output layer to find objects and evaluate the model accuracy

Further information about eCognition products is available on our website:

www.eCognition.com

[+ -
TRANSFORMING THE WAY THE WORLD WORKS @Tl']mble

Page 3

http://www.ecognition.com/

Requirements

To perform this Tutorial, you will need:
e eCognition Developer version 9.3 (or higher) installed on a computer
e A computer mouse is highly recommended

All steps of this tutorial can be done using eCognition Developer. You can also use the free-trial version,
however, in this case, you won’t be able to save your network or export the results.

This tutorial is designed for self-study.

Data included with the Tutorial
The tutorial folder contains:

e animage M-31-01.jpg, representing a Russian topographic map available for download on the internet
e a GroundTruth.shp, which denotes the locations of the symbol for church in the map (manually created)
e arule set Tutorial.dcp

Lesson 1 - First steps with convolutional neural networks

1.0 Lesson Content

This lesson gives you a first taste of the steps involved in using convolutional networks for practical applications.
The task we set ourselves is to find cross-like symbols, representing churches, on a Russian topographical map of
London, which is available for free on the internet (see Figure 1.1).

To evaluate the neural network approach, we follow common machine-learning practice: we train the model on a
training data set (training region), and validate the model on a test data set (test region) that has not been used
during training.

In this lesson, you will learn to:

[+ -
TRANSFORMING THE WAY THE WORLD WORKS @Trlmble

Page 4

http://www.ecognition.com/free-trial

1. Create a project and classify samples for targets and non-targets in the training region of the image.

2. Use the algorithm generate labeled sample patches to store sample image patches on the hard disk for
later use in training.

3. Create a convolutional network with a single hidden layer using the algorithm create convolutional
neural network.

4. Use the algorithm train convolutional neural network and the collected samples to train the network, i.e.
adjust its weights to optimize classification accuracy of the samples.

5. Apply the network by using the algorithm apply convolutional neural network to a test region and
generate a heatmap layer for your target class. Values close to one reflect high evidence for the class, and
values close to zero reflect low evidence.

6. Save your trained model using save convolutional neural network algorithm.

1.1 Create a project and prepare a classified image object level
Start eCognition Developer.

Via the menu File > Load image file: load the image in the tutorial folder.
Via the menu Process > Load rule set: load the ruleset in the tutorial folder.
Execute the following processes step-by-step:

e load ground truth: this loads the shapefile from the tutorial folder and shows the ground truth in yellow
(see Figure 1.2a).

o define regions: defines the map region, from which samples are selected, and a test region. Samples in
the test region will be discarded and are not used for training. The test region will later be used for model
validation.

e create class Target: classifies circular regions (radius 3 pixels) around each target location in the map
region as class Target (see Figure 1.2b). Making the targets larger than a single pixel has two advantages:
there are more samples available to train the network (1 sample for each classified pixel), and our model
will learn and create a target heatmap that shows high values in these circular regions around the target
center (and not just at a single target pixel), leading to a more robust target detection.

!
M- A3

Figure 1.2c: Non-Targets are
the ground truth layer. in pink. classified in blue.

e create class Non-Target: classifies dark areas in the map region as class Non-Target (see Figure 1.2c). To
train the neural network, we need samples of at least two classes. We could simply classify all
unclassified objects as Non-Target, but we classify only dark pixels here, expecting those to be the most

[+ -
TRANSFORMING THE WAY THE WORLD WORKS & Trimble.

Page 5

likely false positives, as they are similar to the symbol we want the network to learn. To identify dark
regions, a gaussian smoothing is performed on a Brightness layer, followed by a threshold segmentation.
o remove classification from test region: removes all classified objects from the test region.
e evenly sample objects: performs a chessboard segmentation (size 1) on the classified objects. Each of
the pixel-sized objects now has an equal chance to be picked up as a sample in the subsequent analysis.

1.2 Create labeled sample patches

Now you are ready to create sample patches that can be used for training a convolutional neural network in
eCognition. To do this you need the eCognition algorithm generate labeled sample patches,

e Edit the first process in “CREATE SAMPLES” by clicking on it, and selecting edit from the context menu
(see Figure 1.3).

This algorithm will create 8000 sample patches, randomly picked from all the pixels of the image object domain
(here: all Target objects). For each pixel that gets picked by the algorithm, an image patch of 22x22 pixels around
the central pixel is exported to the Sample folder. These samples have three layers (Layer 1, Layer 2, and Layer 3).

The “Delete existing sample folder” option has been set to “yes”, meaning that any samples already in the folder
are deleted. This is good practice for the first time you add samples to the sample folder, as it will ensure that the
rule set behaves the same way every time you execute it, and does not accumulate more and more samples.
(Those samples may also be outdated if you were to make changes to the rule set.) You need to be careful though
when using this option: make sure your sample folder is specified correctly, to avoid an unpleasant surprise when
you find that valuable data was accidentally deleted.

Edit Process. F X
Name Algorithm Description
= j Saves sample image patches with a label based on the classification for
[+ Automatic 3 convolutional neural network training.

Targetat New Level select 8000 sample patches 22x22x3 using Algorithm parameters

Algorithm

Parameter Value
o Sample count 3000
Sample patch size 22
Domain Use image layer array No
image ohject level = Image layers [Layer1, Layer2, Layer3]
Sample folder {:Scene Dir\Samples
el VT Delete existing sample folder Yes
Level MNew Level -
Class filter Target
Condition
Map From Parent
Region From Parent -

Loops & Cycles
[/ Loop while something changes only

Number of cycles 1 -

Execute Dk | Cancel [Help

Figure 1.3: Settings of algorithm: generate labeled sample patches.

e execute the CREATE SAMPLES process with both subprocesses. This will take a few minutes.

e verify that image patches have indeed been exported to the sample folder. Samples of different classes
are exported to different folders. The samplespace.xml stores additional information needed for
eCognition, and should not be manipulated (see Figure 1.4).

o .
@& Trimble.

Page 6

<?xm1 version="1.0" encoding="UTF-8"7>

fianic <sample-space>
<sample-info data-type="unsigned 8 bit" channels="3" size="22"></sample-info>
0 <class-mapping>
1 <class id="0">Target</class>
<class id="1">Non-Target</class>
£ samplespacexml </class-mapping>

</sample-space>

Figure 1.4: The contents of the sample folder viewed in the explorer. Samples for different class labels are
divided into different folders. The samplespace.xml is used by eCognition to store impportant information.

The larger number of Non-Target samples was chosen here because the image contains much more Non-Target
than Target regions, thus misclassifications of Non-Targets are more problematic. The idea is to have this bias
reflected during the training, while still providing a good mixture of Targets and Non-Targets.

1.3 Create a convolutional neural network
In the next step, we create a convolutional neural network. This requires only one algorithm.
e Edit the process ‘Create convolutional neural network’ and check the settings (see Figure 1.5).

The algorithm defines the size of the samples (here 22x22 pixels, 3 layers) that will be fed into the model, and the
classes generated on output (here: Target and Non-Target).

It also defines the number of hidden network layers (here: 1). For each layer, the size of the convolutional kernel
needs to be specified, as well as the number of features to be generated, and whether to use spatial pooling or
not. The network defined here uses only one hidden layer:

e The kernel size is 13x13.
® 40 feature maps are generated.
e spatial max pooling is performed

Edit Process ? X

Name Algarithm Description

=l | ;j Creates a convolutional neural network architecture with random initial

| Automnatic weights. The model receives the image as input, and generates classes on

create 2-layer comvolutional neural network with kemels [13]. fea Algorithm pajameters

Algorithm Parameter Value

x 4 Input -

Sample patch size 22

Domain Number ofimage layers 3

axecule - 4 Qutput
Model classes Non-Target. Target

Parameter Value S

Gongior . Number of hidden layers 1

Map From Parent 4+ Hidden layer 1
Kemel size 13
Number of feature maps 40
Max pooling Yes

Loops & Cycles >4

|| Loop while something changes only

MNumber of cycles 1 -

| Execute | Ok | ‘ Cancel | ‘ Help

Figure 1.5: Settings of algorithm: create convolutional neural network.

The hidden layer kernel thus corresponds to 3x13x13x40 weights. The first factor corresponds to the number of
feature maps in the previous hidden layer (or here, the image layers) and the second and third factors describe

- .
TRANSFORMING THE WAY THE WORLD WORKS & Trimble.

Page 7

the number of units in the local neighborhood, from which connections are formed into the hidden layer. The
final factor corresponds to the number of feature maps generated. After all, we do not train only one kernel of
size 3x13x13, but 40 different ones. The only hidden layer of this network thus contains 20,280 different weights,
which can be trained.

Note that the spatial extent of the feature maps shrinks from layer to layer (see Figure 1.6). While the original
sample input has 22x22 units, after convolution with a 13x13 kernel only 10x10 valid units remain (units further
to the side are receiving non-existing input, and are dropped from the network). After max pooling, the network
layer further shrinks by a factor of two in both dimensions, we thus have only 5x5(x40) units left. The final layer
in this network has two units left: one for class Target, one for class Non-Target, and both connect to all 1000
units of the previous layer (reflecting another 2000 weights to be trained).

final layer

— hidden layer

00066 N

Figure 1.6: A simplified schematic representation of the model. The image layer of the sample patch has 22
units (in reality, there are 22x22x3 units). After convolution with a kernel of size 13 we obtain a valid feature
map with 10 units, which after max pooling, is reduced to 5 units. (In reality, the feature map has 40 distinct
layers, not just one, and is, of course, also two dimensional). The final layer has two units, which represent the
two trained classes. Each is connected to all units in the max pooling stage of the hidden layer.

We strongly advise you to work only with odd sized kernels (e.g. 13x13, and not 12x12) as even sized kernels will
generate hidden layer units located “between pixels”, and then are shifted slightly to match pixel borders. In fact,
it is a good idea to track the number of units from layer to layer, to ensure that max pooling makes sense (you
need an even number of units to do max pooling) and to ensure that the fully connected final layer, whose kernel
size is automatically adjusted by the software, also has an odd sized number of units.

To give an example: if you had started out here with a sample size of 21x21 and performed a convolution with a
13x13 kernel, you would end up with 9x9 units, and cannot perform a valid max-pooling. If you started out with
20x20 pixels, you end up with 8x8 units and can perform a valid max-pooling, resulting in 4x4 pixels. However, if
this is your final hidden layer, your last convolution kernel will be 4x4, which is even sized. You can use such a
model, but you need to be aware that when you apply your model, the hot spots in your heatmap layer will likely
be somewhat shifted with respect to the target locations.

While so-called deep learning networks can comprise 100 and more layers with 1000s of feature maps, we
recommend you start experimenting with just a few layers and feature maps, as we do here. When you add
more layers and features, more weights need to be optimized during training, typically requiring many additional
samples and longer training times. Moreover, a more complex model may not converge as easily during training.

Fh
TRANSFORMING THE WAY THE WORLD WORKS @*Trimb[e

Page 8

So while adding layers and features makes your model more powerful in principle, it won’t always improve the
performance of your trained model, because optimal weights are harder to find. We hope this tutorial will
encourage you to play with different settings, perhaps also on your own data, to gain your own experiences.

e execute the process CREATE MODEL

Now the model can in principle already be used, but as its weights are set to random values, it will not be useful
in practice before it has been trained.

1.4 Train your network

Training consists of many individual training steps. In each step, a randomly selected batch of samples is fed into
the model, gradients for each weight are evaluated using backpropagation, and weights are optimized using a
statistical gradient descent. Again, a single algorithm takes care of everything.

e edit the process train convolutional neural network (see Figure 1.7).
This algorithm requires you to specify:

the sample folder, which contains the labeled samples for the supervised training
the learning rate (here 0.0015)

the number of training steps (here 5000)

the batch size (humber of samples used at each training step, here 50)

Edit Process ? X
Name Algorithm Description
A : 'lj Trains the network based on labeled sample patches and adjusts the
L anomae 3 model weights using backpropagation

train convolutional neural network (learn rate 0.0015) with 5000=51 Algorithm parameters

o Parameter Value
b Sample folder {:Scene.Dir}\Samples
Learning rate 0.0015
Domain Train steps 5000
execute - Batch size 50
Parameter Value
Condition -
Map From Parent

Loops & Cycles
[+] Loop while something changes only

Number of cycles 1 -

| Execute ‘ | Ok | Cancel Help

Figure 1.7: Settings of the algorithm: train convolutional neural network.

e execute the process TRAIN MODEL. (This will take a few minutes.)

For training, the learning rate is a particularly important parameter. It defines the amount by which weights are

adjusted at each iteration of the statistical gradient descent optimization used by eCognition. If your learning rate
is too small, the learning process is not only slow, but you may get stuck in local minima and end up with weights

not even close to the optimal settings. If your learning rate is too large, you may have fast initial improvement of

your model, but you may not reach the bottom of the minimum, but rather “jump around it” (because the

o .
@& Trimble.

Page 9

changes to the weights are too dramatic), or, you may end up with invalid results and your model may produce
NaN values.

A gradual decay of the learning rate during learning is common practice (but not implemented in this tutorial).

1.5 Use your network

Finally, we are ready to make use of our network, and discover what it has learned.

e Edit the process apply convolutional neural network.

Edit Process. F X
Name Algarithm Description
: ; Applies the convolutional neural network to an image, producing heatmap
] Automatic E layers for selected classes.
apply convolutional neural network (Class[Target]-»Layer[Targe Algorithm parameters
Algorithm Parameter Value
hd 4 Input
Use image layer array MNo
Domain Image layers [Layer 1. Layer2 Layer3]
execute - 4 Qutput (Class - Layer mappings)
5 i Class 1 Target
GG 5 il Output layer for class 1 TargetHeatmap
Qandiion . Class 2 unclassified
Map LGTR, aren Qutput layer for class 2
Loops & Cycles
[+/] Loop while something changes only
MNumber of cycles 1 b
| Execute | Ok ‘ | Cancel | | Help

Figure 1.8: Settings of the algorithm: apply convolutional neural network.

This algorithm requires you to specify the following settings:

® image layers used as model input. This corresponds to the layers of the samples, which were used to train
the model (here: Layers 1, 2 and 3).

e model class(es) for which to create a heatmap, and a layer to which this heatmap is written. (In this layer,
values close to one indicate that the model predicts a high likelihood of target presence, values close to
zero indicate a low target likelihood.) Here, we are only interested in the result for the class Target, and
we want the algorithm to create a raster layer TargetHeatmap.

e execute the process APPLY MODEL to create and display a map of the TestRegion, and to generate and
display the layer TargetHeatmap.

You can see that indeed red dots generally appear in image locations that contain or resemble a target. Although

the convolutional neural network contains only one hidden layer, the model has learned successfully after only
5000 training steps.

- .
TRANSFORMING THE WAY THE WORLD WORKS & Trimble.

Page 10

1.6 Save your network

Figure 1.9b: The generated TargetHeatmap Layer. Red

indicates high values close to 1, blue indicates values

close to zero.

As a last step in this first lesson, we will save the network for later use in production mode.

Edit the algorithm save convolutional neural network and verify its settings.

Edit Process.

MName
[v| Automatic E
save convolutional neural network (*{Workspo. OutputRooff mo

Algarithm

Domain

exacute -
Parameter Value

Condition -

Map From Parent

Loops & Cycles
[v] Loop while something changes only

MNumber of cycles |1

Algorithm Deseription

Saves convolutional neural network model architecture and weight settings.

Algorithm parameters

Parameter
Meta graph file
Index file

Value

"[Workspe.OutputRootl\model\m...
"{Workspe.OutputRoot)imodel\m...

‘ Execute | |

Ok ‘ | Cancel | ‘ Help |

Figure 1.10: Settings of the algorithm: save convolutional neural network.

TRANSFORMING THE WAY THE WORLD WORKS

The algorithm produces three different files, consistent with the the Google TensorFlow™ format we use
internally (see Figure 1.11). The meta graph file can be thought of as storing the network architecture, the other

& Trimble.

files represent the weight settings (affected by training). However, for the options currently offered in eCognition,
this does not really matter. You can simply think of all files together as representing the model.

Name Type Size
model.data-00000-o0f-00001 DATA-00000-0OF-0... 88 KB
maodel.index INDEX File 1KB
model.meta META File 11 KB

Figure 1.11: Modéel files exported by algorithm save convolutional neural network.

If you train your model for a very long time, saving out intermediate states is always a good practice. In some
cases, you may find that during learning your model suddenly produces NaN values on output. (In that case, you
probably want to lower your learning rate.) Also, if you train your model for too long — perhaps showing it the
same samples over and over again — you may run into overtraining. Model performance may still further
increase on your training set, but it may get worse on your test data.

Fh
TRANSFORMING THE WAY THE WORLD WORKS ',@*Trimble

Page 12

Lesson 2 - From class heatmap to accuracy assessment

2.0 Lesson content

In this lesson, we provide you with a prototypical rule set of how to use a class heatmap for detecting actual
targets. We will show you how to choose an optimal threshold, and how to estimate different types of error
rates. This provides you with important quantitative information on the quality of your trained network, and
allows you to compare it to other approaches such as template matching (also available within eCognition
Developer).

You will learn to:

1. Smooth the heatmap, to get a good local estimate of target presence.

Detect local maximal exceeding a certain threshold in the smoothed heatmap.

Select an optimal threshold, that minimizes number of errors.

Create a vector layer of target locations.

Evaluate different types of errors and error rates.

Compare the obtained classification accuracy to that achieved by a template matching approach.

oukwnN

2.1 Heatmap smoothing

Target presence is usually indicated by several pixels of high values around the target location. Therefore, a
smoothed average is expected to more accurately indicate target presence than individual pixel values.

e execute the process SMOOTH HEATMAP to generate and display the layer smoothHeatmap (see Fig. 2c)

U.'Buﬂ?lli“
},B’yﬁe “
<\ Pem mengon-linetc
s (s
1 .

ST ‘\‘r';é!‘
NS S A S
) el

Figure 2.1d: Layer TargetLoc and Figure 2.1e: Targets found with
Targets optimal threshold and correct detections

[+ -
TRANSFORMING THE WAY THE WORLD WORKS I_@J;Tﬂmb[e_

Page 13

2.2 Find local maxima

Target locations are expected to coincide with local maxima (and high values) in the heatmap. With “local” we
have a specific distance in mind, as targets cannot appear just a few pixels from each other.

execute the process pixel filter 2D morphology(dilate) to create a layer localMax. The localMax layer
reflects the maximum value of the smoothedHeatmap in a neighborhood of 9 pixels (the parameter
iterations defines the radius). Thus, when localMax and smoothHeatmap have the exact same value, we
are at a local maximum of the smoothHeatmap layer.

We start out by finding far too many targets, applying a rather liberal threshold of 0.5 (Later, we will drop targets
based on an optimized threshold.).

execute the update variable process to set the threshold variable to 0.5.

execute the layer arithmetics process to generate the layer TargetLoc. This process first describes two
conditions for target presence: the pixel has to be a local maximum of the SmoothedHeatmap layer
(localMax=SmoothedHeatmap) and it needs to exceed the threshold (SmoothedHeatmap>threshold). For
pixels for which both conditions are true, this will evaluate to 1. We then multiply with the value of
SmoothedHeatmap. The value of the TargetLoc layer is thus evaluates to the value of the
SmoothedHeatmap for local maxima above 0.5. All other pixels will have the value 0.

execute pixel filter 2D: morphology(dilate) to enlarge the extent of the TargetLocs in the layer.

execute the multi-threshold segmentation to create circular Target objects. Note that our local maximum
constraint ensures that there are no overlapping targets, nor targets that touch each other.

execute set custom view settings to show the TargetLoc layer and the Target object outlines (see Figure
2.1d).

2.3 Select optimal threshold

Next we select an optimal threshold, in the sense that it minimizes the number of errors. We could also set a
fixed threshold, which may be more reasonable in a real life scenario (in particular if we have no ground truth
available, on which we base the optimization). However, here we are interested in getting a feeling for the quality
of our model, and it seems fair to compare models based on the minimal number of errors that can be achieved.

4 OR

4 AND
Condition | Mean TargetLoc > threshold
Condition Num. of overlap: GroundTruth = 0
[Addnew|

4 AND
Condition | Mean TargetLoc < threshold
Condition MNum. of overlap: GroundTruth > 0
| Addnew.. |

| Addnew.._|

Figure 2.2: Conditions for selecting target objects reflecting errors.

e execute the compute statistical value operation to estimate the number of errors given for the current
threshold setting (0.5). Note that the first AND condition finds false detections (the value is above our
criterion, but there is no ground truth entry). The second AND condition finds missed targets (the value in
TargetLoc is not high enough to be found as a target, but there is a corresponding ground truth entry).

[.
g i ks,
©Trimble

Page 14

Any object meeting either the first AND condition or the second AND condition are counted as errors (see
Figure 2.2).

e execute the update variable process to initialize the currentErrorMin estimate

e execute the update array process to clear the array optimalThresholds in which all threshold values will
be stored which produce this currentErrorMin

e execute the loop: while threshold < 1, which will increase the threshold step by step, and re-evalute the
number of errors that would be obtained with this threshold. If a new minimum is achieved, the
currentErrorMin is updated and any old values in optimal are discarded. If the number of errors obtained
with the current threshold correspond to the currentErrorMin, the threshold is stored in the array
optimalThresholds.

e execute the select value close to median of all optimal thresholds, which will set the optimal threshold
to an intermediate value of all the optimal threshold values found.

2.4 Create target vector layer

o Execute the process CREATE TARGET VECTOR LAYER to generate and display a vector layer Targets
containing all Targets that are found using the optimal threshold identified previously.

2.5 Evaluate error rates

Next we want to compare the vector layers Target and GroundTruth, and quantitatively evaluate the quality of
our convolutional neural network.

e Set a breakpoint on the process on TestMap inside the customized algorithm evaluateErrorRates, and
execute the process COMPUTE ERROR RATES.

e Go to the CustomizedAlgorithm tab in the process tree window, remove the breakpoint, and execute
the processes classify targets, ground truth, and tolerance zones for correct detection to classify circular
regions around the ground truth as class Tolerance. Pixels corresponding to the ground truth are classified
as class GroundTruth, and pixels corresponding to the vector layer Target as class Target (see Figure 2.3).
Be aware that in this rule set GroundTruth objects will be reclassified as Target when the position of
Target and Ground Truth overlap exactly. This is not a problem, as we will only use class GroundTruth to
identify Misses, and in that case, GroundTruth is not overwritten quasi per definition by class Target.

Figure 2.3: Tolerance regions (petrol) around pixel size objects
of classes GroundTruth (yellow) and Target (cyan).

[
TRANSFORMING THE WAY THE WORLD WORKS ,@*Tl'imble

Page 15

execute subclassify tolerances to obtain the following classes:
o Tolerance_Miss does not contain a Target object,
o Tolerance_SingleHit contains exactly one Target object, and
o Tolerance_MultiHit contains several Target objects. Remember that we required that Targets
reflect local maxima in a raster layer, therefore, different Target objects cannot be very close to
each other, and we do not expect any Tolerance_MultiHit objects here. They are thus not
considered further in this tutorial, but you may have to do so if you adapt the ruleset for your
own use case. (You would have to make sure that only one Target in the Tolerance_MultiHit
object is counted as Hit, and the others as False.)
execute the process identify hit, miss, and false to classify pixel-sized objects of classes Hit, Miss, and
False. Note that objects close to the scene border, where results are not fully valid due to lack of context
information, are removed.
execute create vector layers to create (temporary) point vector layers and buffered vector layers for Hits,
Misses and Falses, and to visualize correct detections (in green), false detections (in red), and missed
targets (in yellow).
execute errors and error rates to compute various accuracy estimates

2.6 Comparison to template matching

s
S
-=§

Figure 2.4a: A typical result

execute process standard template matching to generate a template based on the Ground Truth in the
training region (map main) and apply it on the TestRegion. Even though the threshold in the template
matching algorithm is optimized 41 errors occur in the test region.

execute process template matching with mask to generate a template with a mask (this takes a few
minutes) and apply it on the test region. For this more advanced template (where pixels in less
informative regions of a 19x19 pixel patch are ignored) the number of errors is reduced to 22.

AT

. e T it E L e 3
Figure 2.4b: Optimal results with

e ST e

Figure 2.4c: Optimal results with

obtained with the tutorial. The 90 the standard template matching the masked template matching

hits are shown in green, the one approach (41 errors, with 18 approach (22 errors, with 12
missed target is shown in yellow, missed targets and 23 false missed targets and 10 false
and the 4 false positives are shown positives). positives).

in red.

The convolutional neural network created in this tutorial will not always give the same number of errors, as there
are random processes at work, e.g., when samples are generated in the sample folder, and when specific samples

[+ -
TRANSFORMING THE WAY THE WORLD WORKS @.’Tﬂmble.

Page 16

are selected for each training batch. Running the tutorial 253 times, we obtained the distribution of error
numbers shown in Figure 2.5.

25.00%

20.00%

15.00%

10.00%

5.00% -

0.00%
2 2 3 4 5 6 7 8 9 10 11 12

Figure 2.5: Relative frequency of different results for the number of errors based on 253 runs.

This means that the number of errors is on average around 5.6 errors, representing more than a 7-fold
improvement over standard template matching, and an approximately 4-fold improvement compared to
template matching with a masked template.

We believe this illustrates that even very simple convolutional neural networks can be useful in practical
applications.

[+ -
TRANSFORMING THE WAY THE WORLD WORKS @Trlmble

Page 17

Where to get additional help & information?

The eCognition Community

The eCognition Community helps to share knowledge and information within the user, partner, academic and
developer community to benefit from each other's experience.

e eCognition®

The Community contains content such as:

e Wiki: collection of eCognition related articles (e.g. Rule Set tips and tricks, strategies, algorithm
documentation...).

e Discussions: ask questions and get answers.

e File exchange: share any type of eCognition related code such as Rule Sets, Action Libraries, plug-ins...

e Blogs: read and write insights about what’s happening around our industry...

Share your knowledge and questions with other users interested in using and developing image intelligence
applications for Earth Sciences at:

http://community.ecognition.com/.

The User Guide & Reference Book

Together with the software a User Guide and a Reference book is installed. You can access them in the Developer
interface in the main menu ‘Help>eCognition Developer User Guide’ or Reference Book.

The Reference Book lists detailed information about algorithms and features, and provides general reference
information.

eCognition Training
eCognition Training Services offer a carefully planned curriculum that provides hands-on, real-world exercises. We
are dedicated to enhancing customers’ image analysis skills and helping these organizations to accomplish their

goals.

Our courses are held in our classrooms around the world and on-site in our customer's facilities. We offer regular
Open Training courses, where anyone can register and In-Company Training. We also offer Customized Courses to
meet a customer's unique image analysis needs, thereby maximizing the training effect.

For more information please see our website or contact us at: eCognition_Training@trimble.com

Fh
TRANSFORMING THE WAY THE WORLD WORKS @*Trimb[e

Page 18

http://community.ecognition.com/
mailto:eCognition_Training@trimble.com

